

DATA SHEET Hall Effect Current Sensor

PN: CHB_SH15D200

IPN=1000A

Feature

- Closed- loop (compensated) current transducer using the hall effect
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.
- Insulated plastic case recognized according to UL94_V0.
- Supply voltage: DC $\pm 15 \sim 24 \text{ V}$

Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- Low power consumption
- High immunity to external interference

Applications

- The application of variable frequency electrical appliances
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

Very good linearity

Can be customized

Electrical data:	$(Ta=25^{\circ}\mathbb{C},$	$Vc = \pm 15VDC$
------------------	-----------------------------	------------------

Ref Parmeter	CHB1000SH15D200
Rated input Ipn(A)	1000
Measuring range Ip(A)	0 ~ ±2000
Turns ratio Np/NS (T)	1:5000
Output current rms IS(mA)	±200*IP/IPN
Secondary coil resistance RS (Ω)	50
Inside resistance RM (Ω)	[(VC-0.4V)/ (IS*0.001)]-RS
Supply voltage VC(V)	(±15 ~ ±24) ±5%
Accuracy XG(%)	@IPN,T=25°C <±0.2
Offset current IOE(mA)	@IP=0,T=25°C <±0.2
Temperature variation of IOE IOT(mA/°C)	@IP=0,-40 \sim +85°C $< \pm 0.5$
Linearity error sr(%FS)	< 0.1

 $C \in$

Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China. Cheemi Technology Co., Ltd

	,		
Di/dt accurately followed (A/μs)		> 100	
Response time tra(µs)	@90% of IPN	< 1.0	
Power consumption IC(mA)		20+Is	
Bandwidth BW(KHZ)	@-3dB,IPN	DC-150	
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	6.0	

General data:		
Parameter	Value	
Operating temperature TA(°C)	- 40 ∼ +85	
Storage temperature TS(°C)	-55~ +125	
Mass M(g)	620	
Plastic material	PBT G30/G15, UL94- V0;	
	IEC60950-1:2001	
Standards	EN50178:1998	
	SJ20790-2000	

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.

Tel: 025-85996365

The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

